Synthesis of nitrogen-doped carbon nanostructures from polyurethane sponge for bioimaging and catalysis.

نویسندگان

  • Yong Yang
  • Jingchao Zhang
  • Jing Zhuang
  • Xun Wang
چکیده

A facile and environmentally friendly method was developed for the fabrication of N-doped carbon nanomaterials by hydrothermal treatment using polyurethane (PU) sponge as a carbon source. We have demonstrated that the hydrothermal decomposition of PU sponge involves top-down hydrolysis and bottom-up polymerization processes for the synthesis of N-doped carbon dots (N-CDs). Fluorescence spectroscopy and cytotoxicity studies indicated that these highly-soluble N-CDs show excellent photoluminescence properties and low cytotoxicity, and can be used as good probes for cellular imaging. Additionally, the N-doped hollow carbon nanostructures can be designed using a simple template method. The prepared N-doped double-shelled hollow carbon nanotubes exhibited excellent ORR electrocatalytic activity and superior durability. Indeed, our method described here can provide an efficient way to synthesize N-doped carbon-based materials for a broad range of applications.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Scale‐Up Synthesis of Fragrant Nitrogen‐Doped Carbon Dots from Bee Pollens for Bioimaging and Catalysis

Fragrant nitrogen-doped carbon dots of gram scale can be prepared from commercial bee pollens by a hydrothermal process. These carbon dots of 1-2 nm in size show promising applications in cellular imaging and catalysis/photocatalysis.

متن کامل

Nitrogen-doped graphene-rich catalysts derived from heteroatom polymers for oxygen reduction in nonaqueous lithium-O2 battery cathodes.

In this work, we present a synthesis approach for nitrogen-doped graphene-sheet-like nanostructures via the graphitization of a heteroatom polymer, in particular, polyaniline, under the catalysis of a cobalt species using multiwalled carbon nanotubes (MWNTs) as a supporting template. The graphene-rich composite catalysts (Co-N-MWNTs) exhibit substantially improved activity for oxygen reduction ...

متن کامل

Facile and generalized encapsulations of inorganic nanocrystals with nitrogen-doped carbonaceous coating for multifunctionality.

A simple strategy toward versatile encapsulations of inorganic nanocrystals, through a green hydrothermal treatment of commercial polyurethane sponge, was developed. This approach enables us to realize a general method to form a surface-adherent, N-doped coating with a controllable thickness for well-defined structures. These composites exhibit active properties in optical applications and ener...

متن کامل

Preparation of Nitrogen-Doped Graphene By Solvothermal Process as Supporting Material for Fuel Cell Catalysts

Development of efficient electrocatalysts for oxygen reduction reaction (ORR) is one of the most important issues for optimizing the performance of fuel cells and metal-air batteries. The introduction of nitrogen into carbon nanostructures has created new pathways for the development of non-precious electrocatalysts in fuel cells. In this work, nitrogen-doped graphene (NG) was synthesized by a ...

متن کامل

Facile synthesis of water-soluble and biocompatible fluorescent nitrogen-doped carbon dots for cell imaging.

A simple, facile and green hydrothermal method was developed in the synthesis of water-soluble nitrogen-doped carbon dots (N-CDs) from streptomycin. The as-prepared N-CDs displayed bright blue fluorescence under the irradiation of UV light, together with a high quantum yield of 7.6% and good biocompatibility as demonstrated by the cell viability assay. Thus, the N-CDs can be used as fluorescent...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Nanoscale

دوره 7 29  شماره 

صفحات  -

تاریخ انتشار 2015